STBC 送信ダイバーシチを用いた
大規模分散アンテナ小セルネットワークにおける
スケジューリングに関する一検討
齋藤 智之 安達 文幸
東北大学 電気通信研究機構 〒980-8577 宮城県仙台市青葉区片平 2-1-1
E-mail: saito.tmm@riec.tohoku.ac.jp, adachi@ecei.tohoku.ac.jp

あらまし 第 5 世代（5G）移動無線システムの実現に向けて筆者らは、マクロセル内に多数の分散アンテナを配置し、それらを協調して利用する分散アンテナ協調信号伝送（Cooperative distributed antenna transmission, CDAT）を提唱している。移動無線システムでは、マクロセル内に多数のアクティブユーザが存在し、各ユーザの受信電力やCCI電力はユーザの位置により依存し複雑に変動する。そこで、ユーザ間の公平性を確保しつつ、無線帯域を有効に活用するにはスケジューリング（Proportional Fair (PF)、Round-robin (RR)、Max-SNR）を用いることが必須である。

筆者らはこれまで、任意の数の分散アンテナを用いて大きな空間ダイバーシチ次数を確保できる時空間ブロック符号化（STBC）ダイバーシチを適用した CDAT におけるスケジューリングの検討を行ってきた。広帯域無線伝送のような比較的周波数選択性が強いチャネル環境では、各ユーザのリソースブロック内平均フェージングチャネル利得の差がほとんど無くなることからマルチユーザーダイバーシチ利得が低下し、その結果、PF スケジューリングと RR スケジュールの差が僅かになることを示した。そこでリンク容量の向上には、マクロセル内の分散アンテナ本数の増加が効果的である。しかしながら、7 本以上の分散アンテナを用いる場合についての検討は十分ではなかった。

そこで本報告では、7 本以上の分散アンテナを用いる大規模分散アンテナ小セルネットワークについての検討結果を報告する。計算機シミュレーションにより、平均合計リンク容量、ユーザリンク容量および Jain の公平性指標（FI）との関係に及ぼす分散アンテナ本数の影響について明らかにしている。また、分散アンテナの配置法（規則的配置およびランダム配置）の影響についても考察している。

キーワード 分散アンテナ協調伝送、時空間ブロック符号化、スケジューリング

Study on Scheduling for Large-Scale Distributed Antenna Small-Cell Network Using STBC Transmit Diversity
Tomoyuki SAITO and Fumiyuki ADACHI
Research Organization of Electrical Communication, Tohoku University
2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 Japan
E-mail: saito.tmm@riec.tohoku.ac.jp, adachi@ecei.tohoku.ac.jp

Abstract To realize the fifth generation (5G) mobile communication systems, we proposed cooperative distributed antenna transmission (CDAT). In the mobile communication systems, many active users are existed in macro-cell, and the received power and the CCI power of each user is varied according to user’s position. Therefore, the user scheduling scheme (Proportional Fair (PF), Round-robin (RR), Max-SNR) is required for effectively utilizing a radio communication band while ensuring the fairness of each user. We have been studying user scheduling scheme for CDAT using space-time block coded (STBC) diversity that can obtain large spatial diversity order while using arbitrary distributed antennas. We have found in our previous work that as the frequency selectivity of the channel gets stronger, the differences in averaged channel gains, due to multipath fading, among active users is substantially reduced and therefore even the RR scheduling provides the link capacity similar to the PF scheduling.

To improve the link capacity, increasing number of distributed antennas in macro-cell is effective. However, small-cell network using more than 7 distributed antennas has not been sufficiently examined.

In this paper, we report the result of studies on large-scale distributed antenna small-cell network using seven or more distributed antennas. We evaluate, by computer simulation, the relationship of average sum link capacity, user link capacity, and Jain’s fairness index. We discuss the impact of number of distributed antennas and the impact of distributed antenna deployment (uniform and random).

Keywords cooperative distributed antenna transmission, space-time block coding, scheduling
1. まえがき
第5世代移動通信システムでは、通信エリア全体で広帯域伝送の実現が求められている。しかしながら、広帯域無線チャネルは伝搬損失、シャドウリングおよび周波数選択性ファーミングにより伝送品質が著しく劣化してしまう[1]。これらの問題を克服するために、マクロセル内に多数の分散アンテナを配置し、それらを協調して利用する分散アンテナ協調伝送（Cooperative distributed antenna transmission, CDAT）が近年注目を集めている[2,3]。CDATでは、ユーザ端末（UE）近傍の分散アンテナ（DA）を用いることにより伝搬損失とシャドウリング損失の影響を低減でき、通信マクロセルエリア全体に亘って優れた伝送品質を達成できる。CDATにおける有益な技術の一つとして、2本以上の分散アンテナを用いる時空間ブロック符号化（STBC）ダイバーシチ[4,5,6]が知られている。

ところで、利用可能な無線帯域は限られているため、マクロセル内に存在する多数のアクティブユーザの公平性を確保しつつ、無線帯域を有効に利用するためにマルチユーザーダイバーシチングの実施は必須である。筆者らはこれまで、広帯域無線伝送における周波数選択性が強いチャネル環境やSTBCダイバーシチを用いたCDATのように大きな空間ダイバーシチが得られるチャネル環境では、各ユーザのリソースブロック内平均フェージャンスチャネル利得の差がほとんど無くなることからマルチユーザーダイバーシチ利得が低下し、その結果、PFスケジューリングにより得られるリンク容量の向上利得が低下することを示した[7,8]。そこでリンク容量の向上には、マクロセル内の分散アンテナ本数を増やすことが効果的であるが、7本以上の分散アンテナを用いた場合の検討は不十分であった。

本稿では、計算機シミュレーションにより、平均合計リンク容量、ユーザリンク容量とJainの公平性指標（FI）との関係を求め、マクロセル内の分散アンテナの各スケジューリング規則に及びず影響を定量的に評価している。また、アンテナ配置法（規則の配置、ランダム配置）の影響についても評価している。その結果、マクロセル内の分散アンテナ本数を増加させることで、マクロセル内の平均合計リンク容量とFIを向上させることができ、簡易的な処理スケジューリングでもPFスケジューリングと同程度の平均合計リンク容量とFIを得ることができる事を明らかにしている。

本稿の構成は以下の通りである。第2章において小セルネットワークモデルについて述べ、第3章にて伝送系について述べる。第4章でマルチユーザーシミュレーションの動作原理を示し、第5章でチャネルモデルを述べたのち計算機シミュレーション結果を示す。第6章で結論を述べる。

2. 小セルネットワークモデル
本稿では、周辺マクロセルからの一チャネル干渉（CCI）が存在するマルチセル環境を仮定する。図1にDAを用いた小セルネットワークモデル（Nmacro=37、規則的DA配置）を示し、中央マクロセル（#0）を注目マクロセルとし、その周辺に6つのマクロセル（#1～#6）が存在することを仮定している。小セルネットワークでは、ひとつのマクロ基地局（MBS）に有線接続されたNmacro本のDAがマクロセル内に配置されており、各DAは半径Rの小セルをカバーしている。UEはNue本のアンテナを搭載しているものとし、各UEはマクロセル内のNmacro本のDAからNubs本のDAを送信ダイバーシチブランチとして選択して、STBCダイバーシチODM下りリンク伝送を行う。

The cell of
interest(#0)
Cell radius R
Small cell radius
R’ = R / √Nmacro
Distributed antenna

図1 規則的DA配置を用いる
小セルネットワークモデル（Nmacro=37）

3. STBCダイバーシチを用いるOFDM下りリンク伝送系
本稿では、FDEを用いるため周波数領域信号表現を用いる。N本のサブキャリアを用いて伝送するものとする。全周波数帯域をN/NUE個のサブキャリアからなるNUE個のリソースブロックに分割し、リソースブロック単位でマルチユーザースケジューリングを行うものと仮定している。以下、スケジューリングにて第n（n=0~NUE-1）リソースブロックに第uユーザが割り当てられたものとした伝送系について述べる。

3.1. 送信FDEを用いるSTBCダイバーシチ
図2に、送信FDEを用いるSTBCダイバーシチの送信機構成を示す。送信機（MBS）では、N/NUE個のデータシンボルからなるN個の信号ブロックに対してもSTBC符号化を適用してNue×Q行列のSTBC符号化信号行列X(k)を生成する。第nリソースブロックの第j(n=0~J-1)送信シンボルブロックを{Dn,k,j}とし、STBC符号化信号行列X(k)は次式で与えられる。

\[
X(k) = \begin{bmatrix}
D_{0,k,j} & D_{1,k,j} & \cdots & D_{N-1,k,j}
\end{bmatrix}
\]

(1)

次いでNubs行×Nue列の送信FDE重みWmub(k)を乗算して、Nubs×Q送信信号行列S(k)を生成する。送信FDE重みは送信シンボルとSTBC復号後の受信シンボルの受信信号電力対雑音電力比（SNR）を最大化する送信MRT-FDEを用い、次式で表される。

\[
W_{mub}(k) = AH'\left(k \right)
\]

(2)

ここで、AとH'(k)はそれぞれ、次式で与えられる電力正規化係数とNue行×Nubs列の周波数領域チャネル行列である。ここで、[.]Hはエルミート転置を表す。
ここで E および T_r は送信データシンボルエネルギーおよびデータシンボル長をそれぞれ表している。それ以後、サブキャリアマッピングを行い、N_{RB} 番目のリソースブロックを全周波数帯域にマッピングした信号行列に対して N_c ポイントの IFFT を適用し、OFDM シンボルのガード区間に Cyclic Prefix (CP) を挿入した後、N_{mbs} 本の分散アンテナから信号を送信する。

各 UE では、受信信号から CP 除去後、N_c ポイントの FFT を適用して、サブキャリアデマッピングを行い、割り当てられた第 n リソースブロックの信号を取り出す。サブキャリアデマッピング後の受信信号は、次式のように N_{ue} 行×Q 列の行列 $R(k) = \{R(k;n_{\text{ue}},q); n_{\text{ue}} = 0\sim N_{\text{ue}}-1, q = 0\sim Q-1\}$ として表現できる。

$$\mathbf{R}(k) = \mathbf{H}(k)\mathbf{S}(k) + \mathbf{N}(k)$$

ここで、$\mathbf{N}(k) = \{N(k;n_{\text{ue}},q); k = 0\sim N_{\text{ue}}-1, q = 0\sim Q-1\}$ は第 N_{ue} 行×Q 列の乱雑音行列であり、各要素はゼロ平均で分散 $2N_{\text{u}}T_r$ を持つ独立な複素ガウス変数である。次いで STBC 復号を行い、最後にデータ復調を行う。

3.2. リンク容量

本稿では、STBC 復号後の受信信号対（雑音+CCI）電力比（SINR）とチャンネルの容量式[1]に基づいて OFDM 下りリンク容量を求める。総サブキャリア数 N_c に対して周波数分割多重（Frequency division multi-access, FDMA）によって U (=N_{ue}) 台の UE を多畳し、各 UE には N_c/N_{ue} 本のサブキャリアが割り当てられているものとする。一般性を失うことなく、第 n リソースブロックには $k = n(N_c/N_{\text{ue}})-(n+1)(N_c/N_{\text{ue}})-1$ 番目の N_c/N_{ue} 本のサブキャリアを割り当てるものとする。第 n リソースブロックを割り当てられた時の第 u UE の OFDM 下りリンク容量 $C_u(n)$ (bps/Hz) は次式により計算できる。

$$C_u(n) = \frac{1}{N_c/N_{\text{RB}}} \sum_{k=0}^{N_c-1} \log_2(1 + \gamma_u(k))$$

ここで $\gamma_u(k)$ は第 u UE の STBC 復号後の第 k サブキャリアの瞬時 SINR であり、次式で表される[6]。

$$\gamma_u(k) = \frac{(N_c/N_{\text{RB}})^2}{\mu_u} \frac{E}{W}$$

ここで、E は正規化送信シンボルエネルギー対雑音電力スペクトル密度比である。$\hat{H}(k)$ は、μ_u はそれら、下りリンクチャネル利用度と第 u UE が受ける下りリンク CCI 電力スペクトル密度であり、次式で与えられる。

$$\hat{H}(k) = \sqrt{\frac{1}{N_c/N_{\text{RB}}} \sum_{k=0}^{N_c-1} \sum_{n_{\text{ue}} = 0}^{N_{\text{ue}}-1} \sum_{q = 0}^{Q-1} [H(k;n_{\text{ue}},n_{\text{mbs}})]^2}$$

$$\mu_u = 1 + \frac{I_0(u)}{N_{\text{u}}}$$

ここで、$I_0(u)$ は注目セル（#0）の第 u UE が受ける CCI 電力スペクトル密度である。

4. マルチユーザスケジューリング

本稿では、Proportional Fair (PF) 規範、Max-SNR 規範および Round-Robin (RR) 規範を用いた 3 つのスケジューリング戦略[10]について検討している。

スケジューリングは第 t タイムスロットにおいて、マクロセル内に存在するアクティブユーザ U_{act} 台から U (=N_{ue}) 台を第 n リソースブロック ($n=0\sim N_{\text{ue}}-1$) 毎に選択する。したがって、同一タイムスロット内では、各ユーザに最大 1 つのリソースブロックが割り当てられる。また、第 t タイムスロットの第 n リソースブロックの第 u ユーザのリンク容量は式(7)を用いて次式のように表す。

$$C_u(n,t) = a_u(n,t)C_u(n)$$

ここで、$a_u(n,t)$ は第 u ユーザが第 t タイムスロットの第 n リソースブロックを割り当てられたかを示す変数
であり、割り当てられた場合は 1、割り当てられなかった場合は 0 となる。

4.1. PF スケジューリング
PF スケジューリングでは、第 \(t \) タイムスロットにおいて第 \(n \) リソースブロックを割り当てたときに、次式が最大となる \(u \) ユーダに第 \(n \) リソースブロックを割り当てる。この時のユーダインデックス \(u^*(n,t) \) は次式で与えられる。

\[
u^*(n,t) = \arg \max_{0 \leq u \leq 1} \frac{\hat{C}_n(n,t)}{\overline{C}_n(t-1)}
\]

ここで \(\hat{C}_n(n,t) \) は第 \(u \) ユーダが第 \(t \) タイムスロットの第 \(n \) リソースブロックを割り当てられた場合に与えられる瞬時ユーザリング容量の期待値を示し、受信電力対雑音電力比（SNR）で与えられるチャネル容量に基づいて次式のように表せる。

\[
\overline{C}_n(t-1) = \sum_{k=N_0}^{N_0} \frac{E_k}{N_0} \log_2 \left(1 + \frac{E_k}{N_0} \right) \quad \text{ただし} \quad u \neq u^*
\]

また、\(\overline{C}_n(t-1) \) は第 \(u \) ユーダの第 \(t-1 \) タイムスロットまでの平均ユーザリング容量であり、次式で与えられる。

\[
\overline{C}_n(t-1) = \begin{cases}
\frac{1}{T_{\text{Fr}}} C_n(t-1) & u \neq u^* \\
\frac{1}{T_{\text{Fr}}} C_n(t-1) + \frac{1}{T_{\text{Fr}}} C_n(t) & u = u^*
\end{cases}
\]

ここで \(T_{\text{Fr}} \)、\(C_n(t) \) はそれぞれ平均化区間と式(11)に基づいた第 \(t \) タイムスロットにおける瞬時ユーザリング容量である。

4.2. Max-SNR スケジューリング
Max-SNR スケジューリングでは、各タイムスロットにおける瞬時リンク容量が最大となるユーザをスケジューリングする。第 \(t \) タイムスロットにおける第 \(n \) リソースブロックに割り当てられるユーザインデックス \(u^*(n,t) \) は次式で与えられる。

\[
u^*(n,t) = \arg \max_{0 \leq u \leq 1} \frac{\hat{C}_n(n,t)}{\overline{C}_n(t-1)}
\]

4.3. RR スケジューリング
RR スケジューリングでは、ユーザの瞬時チャネル状態を考慮することなく、各ユーザに順番にリソースブロックを割り当てる取りあえずスケジューリング戦略である。各ユーザに与えられる通信機会は公平になるが、チャネル状態の悪いユーザにも無理にリソースを割り当てるため、一般的には各ユーザが得られる通信リンク容量は公平とはならない。しかしながら、広帯域無線通信のような周波数選択性が強い伝搬環境や STBC ダイバシティを用いた CDAT のように大きな空間ダイバシティが得られる環境の場合、各ユーザのリソースブロック内平均フェーディングチャネル利得の差が小さくなるため、PF スケジューリングと比べても遜色のない公平性と通信リンク容量を達成できるものと期待できる。

5. 計算機シミュレーション
CDAT を用いた小セルネットワークの OFDM 下りリンク容量を計算機シミュレーションにより求め、各スケジュール方式の平均合計リンク容量、UE リンク容量、FI の関係を求めた。

広帯域無線伝搬チャネルは伝搬損失、シャドウィング損失、および周波数選択性フェーディングによって特徴づけられる。DA—UE 間距離が小さい場合は見通しが可能となり、フェーディングチャネルは周波数選択性伸上・ラインフェーディングによって特徴づけられると考えられる。第 \(n_{\text{mbs}} \) DA—第 \(u \) UE 間距離（\(d_{u,n_{\text{mbs}}} \)）が小セル半径以下の場合（\(d_{u,n_{\text{mbs}}} \leq R \)）は、DA—UE 間のチャネルは周波数選択性伸上、ラインフェーディングによって特徴づけられるものとし、第 \(n_{\text{mbs}} \) DA—第 \(u \) UE 間距離が小セル半径より大きい場合（\(d_{u,n_{\text{mbs}}} > R \)）は、DA—UE 間のチャネルは周波数選択性ライニーフェーディングによって特徴づけられるものとする。第 \(n_{\text{mbs}} \) DA—第 \(u \) UE アンテナ間のチャネルインパルス応答 \(h(t,n_{\text{mbs}},u) \) は次式で表される。

\[
h(t,n_{\text{mbs}},u) = \frac{d_{u,n_{\text{mbs}}}}{10 \log_{10} \left(\frac{K}{\sum_{i=0}^{K} \exp(-d_{u,n_{\text{mbs}}})/K} \right)}
\]

ここで \(d_{u,n_{\text{mbs}}} \) は伝搬損失指数であり、\(n_{\text{mbs}} \) は第 \(n_{\text{mbs}} \) DA—第 \(u \) UE 間のシャドウィング損失（dB）である。また、\(K \) は伸上・ラインフェーディングの K ファクタである。\(\theta_{n_{\text{mbs}}}(u) \) は第 \(n_{\text{mbs}} \) DA—第 \(u \) UE アンテナ間チャネルの主波の位相であり、\(\tau_{n_{\text{mbs}}}(u) \) は主波の遅延時間である。また、\(\tau_{n_{\text{mbs}}}(u) \) は第 \(n_{\text{mbs}} \) DA—第 \(u \) UE アンテナ間の第 \(i \) 遅延パスの遅延時間である。シミュレーション諸元を表 1 に示す。FFT/IFFT ブロックサイズ \(N_t \) および CP 長 \(N_c \) はそれぞれ \(N_{\text{act}}=1024 \) よび \(N_p=16 \) とし、マクロセル内に配置する DA 本数 \(N_{\text{macro}}=19,37 \) としている。伝搬損失指数 \(a \) よりおよびシャドウィング損失の標準偏差 \(a \) はそれぞれ \(a=3.5 \) および \(\sigma=7.0 \)dB と仮定している。また、DA—UE 間距離が小セル半径 \(R \) 以下の場合（\(d_{u,n_{\text{mbs}}} \leq R \)）、フェーディングチャネルは \(K=10 \)dB の周波数選択性伸上・ラインフェーディングチャネルになり、一方 DA—UE 間距離が小セル半径 \(R \) より大きい場合（\(d_{u,n_{\text{mbs}}} > R \)）は、周波数選択性ライニーフェーディング（つまり \(K=0 \)dB）にとえるものと仮定している。また、タイムスロット間のフェーディングは独立で無相関と仮定した。ユーザ間の公平性の指標である \(FI \) は以下のようによ定義される。

- - 46 -
5.1. 分散アンテナ本数の効果
図3に送信受信アンテナ本数$N_{\text{mbs}}\times N_{\text{act}}=4\times 2$、多重ユーザ数/アクティブユーザ数が2/56の条件にて、マクロセル内のDA本数N_{macro}を7、19、37本と増やした場合の平均合計リンク容量と平均FIの関係を示す。次いで、図4に同条件下の5%アウテージUEリンク容量と平均FIの関係を示す。図3より、DA本数N_{macro}が7、19、37本と増えるにつれて各スケジューリングの合計リンク容量とFIが向上することが分かる。また、RRとPFスケジューリングの特性差はDA本数が増えるにつれて小さくなることが分かる（$N_{\text{macro}}=7\to 37$とした場合、FIの差は約2.3→約1.2%、合計リンク容量の差は約4.0%→約1.6%）。これは、マクロセル内のDA本数が増えたことで、UE近傍のDAが選択されることにより伝搬損失とシャドウウィンク損失が低減されたことと、被選択DA本数が増えたことによりアンテナ選択による空間ダイバーチ効果が高まったことで、各UEのリンク容量が向上すると共にUE間のリンク容量の差が小さくなったためである。同様の理由にて、図4ではDA本数（N_{macro}）が増えるにつれて、セル端ユーザの品質が向上していることが分かる。また、図4から分かるように、Max-SNRスケジューリングの5%アウテージUEリンク容量が非常に小さいことが分かる。これは、Max-SNRスケジューリングでは合計リンク容量が最大になるようにチャネル帯域の良いユーザのみを選択するため、リンク容量の低いユーザには通信機会が与えられないと考えられるためである。
これらの理由より、周辺セルからのCCIが存在するマルチセル環境においても、通信マクロセル内の平均合計リンク容量を向上するにはマクロセルのDA本数（N_{macro}）を増やすことが効果的であることと、簡単な処理のRRスケジューリング用いてもPFスケジューリングと同程度の平均合計リンク容量とFIが得られることを示す。

表1 シミュレーション諸元

<table>
<thead>
<tr>
<th>Network</th>
<th>No. of distributed antennas</th>
<th>N_{macro}=7, 19, 37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small-cell radius</td>
<td>$R'=R/\sqrt{N_{\text{macro}}}$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transmitter/Receiver</th>
<th>Normalized transmit E_b/N_0</th>
<th>$E_b/N_0=0\text{dB}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of FFT/IFFT block size</td>
<td>$N_f=1024$</td>
<td></td>
</tr>
<tr>
<td>Guard interval length</td>
<td>$N_g=16$</td>
<td></td>
</tr>
<tr>
<td>No. of transmit antennas</td>
<td>$N_{\text{mbs}}=4$</td>
<td></td>
</tr>
<tr>
<td>No. of receive antennas</td>
<td>$N_{\text{act}}=2$</td>
<td></td>
</tr>
<tr>
<td>Path loss exponent</td>
<td>$\alpha=3.5$</td>
<td></td>
</tr>
<tr>
<td>Shadowing loss standard deviation</td>
<td>$\sigma=7.0\text{dB}$</td>
<td></td>
</tr>
<tr>
<td>Channel estimation</td>
<td>Ideal</td>
<td></td>
</tr>
<tr>
<td>Frequency-Selective block</td>
<td>Nakagami-Rice and Rayleigh fading</td>
<td></td>
</tr>
<tr>
<td>K factor of Nakagami-Rice</td>
<td>$K=10\text{dB}$</td>
<td></td>
</tr>
<tr>
<td>Power delay profile (PDP) shape</td>
<td>16-path uniform</td>
<td></td>
</tr>
</tbody>
</table>

5.2. アンテナ配置法の影響
図6に、$N_{\text{macro}}=37$とし、DAをランダム配置した場合の小セルネットワークモデルを示す。最小DA間距離$d_{\text{DA-DA}}$は、小セル半径$R'=R/\sqrt{N_{\text{macro}}}$の10分の1以上とするように制限している。
図7に送信受信アンテナ本数$N_{\text{mbs}}\times N_{\text{act}}=4\times 2$、多重ユーザ数/アクティブユーザ数が2/56の条件にて、規則的なDA配置とランダムDA配置の場合の平均合計リンク容量、5%アウテージUEリンク容量と平均FIの関係を示す。
6. まとめ

本報告では，STBC ダイバーシチを用いる大規模分散アンテナ小セルネットワークにおける OFDM 下りリンク伝送対象に，PF，RR および Max-SNR スケジューリングによる平均合計リンク容量，UE リンク容量および平均 FI を求めた。

STBC ダイバーシチを用いる広帯域移動無線通信では，RR と PF スケジューリングの特性差が著しいことから，簡易な処理の RR スケジューリングで十分であることを明らかにした。さらにアンテナ配置法（規則的配置とランダム配置）の影響についても検討し，分散アンテナ本数（N_{macro}）が十分に多ければアンテナ配置法が合計リンク容量と FI にほとんど影響を与えないことを明らかにした。

謝辞

本稿は，総務省情報通信研究所「第 5 世代移動通信システム実現に向けた研究開発～超高密度マルチバンド・マルチアクセス多層セル構成による大容量化技術の研究開発～」（#0155-0019，2016 年 4 月）による委託を受けて実施した研究開発による成果である

文献

[2] 瀬山崇志，小林崇幸，伊達茂隆，関宏之，稲輪守彦，須山聡，奥村幸彦，“5G 超高密度分散アンテナシステムにおける協調 MU-MIMO 送信の基礎検討，”信学会ソサイエティ大会，B-5-65，2015 年 9 月。
[8] 藤緒智之，安達文幸，“STBC ダイバーシチを用いる協調分散アンテナネットワークにおけるステーシューリングに関する一検討，”信学技報，vol. 116，no. 257，RCS2016-154，pp. 7-12，2016 年 10 月。