Evolution into 4G

- In 4G systems, a peak data rate of around 1Gbps is demanded.
- Available radio bandwidth may be limited to 100MHz.
- Some advanced wireless techniques to achieve more than 10bps/Hz/BS are necessary; e.g., multi-input/multi-output (MIMO) antenna techniques, powerful error control, etc.

Wireless Propagation Channel

- In terrestrial wireless communications, the transmitted signal is reflected or diffracted by large buildings between transmitter and receiver, creating a number of propagation paths having different time delays.

Frequency-selective Channel

- For broadband signal transmission, the transfer function of wireless channel varies over the signal bandwidth.
- Challenge is to transmit data at high speed (around 1 Gbps) with high quality over such a severe frequency-selective channel.

\[L = 16, \text{ Uniform power delay profile, } l\text{-th path time delay}=100l + [-50,50]ns \]
Frequency-domain Equalization for Taking Advantage of Channel Selectivity

- Strong inter-symbol interference (ISI) can be produced by the severe frequency-selectivity of the channel.
- This has been long time a big problem for achieving high speed and high quality data transmissions.
- Equalization techniques play an important role to remove ISI and improve the transmission performance.
- Single-carrier (SC) system has been using a time-domain equalization technique, but this can be helpful only in a channel with a moderate number of paths.
- Multicarrier (MC) system representing OFDM carries the transmitting data symbol sequence by a number of orthogonal subcarriers. Simple one-tap frequency-domain equalization (FDE) can provide a good transmission performance in a severe frequency-selective channel.
- One-tap FDE can also be applied to SC system including DS-CDMA to significantly improve the transmission performance.

CDMA Transmitter/Receiver

- One-tap FDE can take advantage of the channel frequency-selectivity and achieve an improved BER performance irrespective of DS- or MC-CDMA.
- Their transmitter/receiver structures also are similar.

![Diagram of CDMA Transmitter/Receiver](image)

Space-Time Block Coded Transmit Diversity

- MC- and DS-CDMA performances coincide for all the modulation levels.
- For 16QAM and 64QAM, however, OFDM provides a better BER performance than either MC- or DS-CDMA.
- This performance degradation of CDMA is owing to the inter-code interference (ICI) produced by the channel frequency-selectivity.

![Diagram of Space-Time Block Coded Transmit Diversity](image)
Frequency-domain STBC-JTRD for \(N_r = 2 \) \((G=Q=2)\)

- **Encoding**
 \[
 \left(\tilde{s}_{0,n} (k), \tilde{s}_{1,n} (k) \right) = \left(\frac{1}{N_r} \sum_{n=0}^{N_r-1} \sum_{i=0}^{N_c-1} w_{n,i} (k) w_{n,i}^*(k) \right) \left(S_0 (k) w_{0,n} (k) + S_i (k) w_{1,n} (k) \right)^T + \left(\frac{1}{N_r} \sum_{n=0}^{N_r-1} \sum_{i=0}^{N_c-1} w_{n,i} (k) \right) \left(S_0^* (k) w_{0,n}^*(k) + S_i^* (k) w_{1,n}^*(k) \right)^T
 \]

 where \(w_{n,r} (k) \) is the MMSE pre-equalization weight, given as
 \[
 w_{n,i} (k) = H_{n,i}^* (k) \left(\frac{1}{N_r} \sum_{n=0}^{N_r-1} \sum_{i=0}^{N_c-1} |H_{n,i} (k)|^2 + \left(\frac{U}{SF} \frac{E_b}{N_0} \right)^{-1} \right)
 \]

 and \(H_{n,r} (k) \) is the channel gain between the \(n \)-th transmit antenna and the \(r \)-th receive antenna at the \(k \)-th subcarrier.

- **Decoding** (for \(t = 0 \sim N_c - 1 \))
 \[
 \left(\tilde{r}_0 (t), \tilde{r}_1 (t) \right) = \left(r_{0,0} (t) + r_{1,0}^* (N_c - t) \right) + \left(r_{0,1} (t) - r_{1,0}^* (N_c - t) \right)
 \]

Hybrid ARQ (HARQ) with Incremental Redundancy (IR)

- An automatic repeat request (ARQ) combined with the channel coding, called hybrid ARQ (HARQ), is an inevitable technique, since an error-free transmission must be guaranteed for packet data services.
- HARQ combined with FDE can take advantage of the channel frequency-selectivity and can significantly improve the throughput.

HARQ w/FDE & ICI Cancellation

- Joint use of FDE and ICI cancellation significantly improves the throughput.
- MC- and DS-CDMA provide better throughput than OFDM due to the frequency-diversity gain.
Frequency-Domain SDM

- MIMO space division multiplexing (SDM) is a promising technique to increase the throughput with limited frequency bandwidth.
- To achieve the frequency-diversity gain, joint MMSE-FDE/parallel interference cancellation (PIC) is repeated for signal detection. This is called iterative FDIC.

Iterative FDIC can improve throughput for both CDMA and OFDM, but is more effective for CDMA.

Broadband MA Schemes Based On Frequency-domain Signal Processing

- Uplink capacity is limited by MAI resulting from asynchronous users.
- For the uplink applications, SC is more suitable than MC because of its lower PAPR property.
- Two approaches:
 - Frequency-domain approach separates users so that their spectra do not overlap in the frequency-domain ➔ Frequency-domain interleaved spread spectrum SCMA
 - Time-domain approach separates users thanks to code orthogonality property of block spreading (users' spectra are overlapped) ➔ 2D block spread CDMA

Frequency-domain interleaved SSMA

- Spread spectrum SC signal is first transformed into frequency-domain signal and then, mapped to different subcarriers, similar to SC-FDMA.
Orthogonal Interleave Patterns

- Equal-spacing pattern

\[c_{t} = \begin{cases} 1, & \text{subcarrier } 0 \text{ to } SF_t - 1 \\ 0, & \text{otherwise} \end{cases} \]

\[c_{f} = \begin{cases} 1, & \text{subcarrier } 0 \text{ to } SF_f - 1 \\ 0, & \text{otherwise} \end{cases} \]

- Localized pattern

\[c_{t} = \begin{cases} 1, & \text{subcarrier } 0 \text{ to } SF_t - 1 \\ 0, & \text{otherwise} \end{cases} \]

\[c_{f} = \begin{cases} 1, & \text{subcarrier } 0 \text{ to } SF_f - 1 \\ 0, & \text{otherwise} \end{cases} \]

- Random pattern

2D Block Spread CDMA

- 2D block spread CDMA uses a product code of two orthogonal spreading codes, \(c_{t} \) and \(c_{f} \), of spreading factors, \(SF_{t} \) and \(SF_{f} \), respectively.
 - Block-time spreading code \(c_{t} \) allows MAI-free multi-access
 - Chip-time (or frequency) spreading code \(c_{f} \) allows reduction of the residual ISI after FDE.
 - MAI-free code combination is \((SF_{t}, SF_{f})=(U, SF/U) \)
 - \(c_{t} \) and \(c_{f} \) codes can be chosen from orthogonal variable spreading factor (OVSF) codes.

\[\begin{align*}
 c_{t} &= \begin{cases} 1, & \text{block-time } 0 \text{ to } SF_{t} - 1 \\ 0, & \text{otherwise} \end{cases} \\
 c_{f} &= \begin{cases} 1, & \text{chip-time } 0 \text{ to } SF_{f} - 1 \\ 0, & \text{otherwise} \end{cases}
\end{align*} \]

2D block spreading can be introduced into both DS- and MC-CDMA.
(SF_u^f, SF_v^f) = (U, SF/U) gives the best uplink performance since
- MAI can be mitigated, without using a sophisticated MUD, thanks to orthogonal block-time spreading
- chip-time spreading factor SF_u^f can be maximized so that the residual ISI can be minimized.

Conclusion
- 4G systems are a broadband packet network and requires Giga-bit wireless technology of around 1Gbps transmission capability.
- Frequency-domain signal processing is an important technique to achieve the goal.
 - Either MC or SC with FDE can be used since both can provide similar performance.
 - Frequency-domain HARQ and MIMO can be used to take advantage of the channel frequency-selectivity.
- Network issue
 - Power problem is an important technical issue in 4G networks. Some fundamental change needs to be introduced to the wireless network.
 - E.g., multi-hop virtual cellular network, collaborative network, distributed antenna network, etc.