Lattice reduction based MIMO detection and its application to multiuser systems

Jinho Choi
Wireless Communications Research Lab (WCRL)
Institute of Advanced Telecommunications
Swansea University, UK

(some parts of the work were supported by Huawei, China)
Outline

1. Introduction
2. MIMO Detection
3. Lattice Reduction based Detection
4. LR based List Detection
5. LR based Detection for MIMO MAC
6. Concluding Remarks
1. Introduction

- The use of multiple antennas has been studied to increase spectral efficiency.
- The resulting channel is called multiple input multiple output (MIMO) channel.

\[
\begin{align*}
N_T \times 1 & \quad N_R \times 1 \\
N_T \text{ transmit antennas} & \quad N_R \text{ receive antennas}
\end{align*}
\]
Capacity of MIMO Channel

- Capacity formula: \(C = \min(N_T, N_R) \log_2(1 + SNR) \)

In wireless communications, power is not an effective means to increase the capacity due to propagation loss (received power \(\propto \) tx power \(\times d^{-r}, r = 3 \) or \(4 \)). Hence, MIMO provides a way to improve capacity without increasing power (or SNR).
How to Achieve MIMO Capacity

- Capacity Achieving Codes
- Higher Order Modulation
- ML or Near ML Decoder (Detector)
An example

- 4×4
- Target capacity = 12 bps/Hz/channel use

Code rate = $\frac{1}{2}$

Modulation order becomes

$$M = 2^{\frac{12 \times 2}{4}} = 64$$
2. MIMO Detection

- In MIMO systems, signal detection for *higher order modulation* is necessary.
- There is a trade-off between complexity and performance.

<table>
<thead>
<tr>
<th>Detection methods</th>
<th>Performance</th>
<th>Complexity</th>
<th>Low complexity/High performance algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML/MAP</td>
<td>Good (full receive diversity)</td>
<td>High (growing exponentially)</td>
<td>Sphere decoding (complexity depends on channel matrices)</td>
</tr>
<tr>
<td>Linear (MMSE/ZF)</td>
<td>No good</td>
<td>Low</td>
<td>LR based algorithms (complexity depends on channel matrices)</td>
</tr>
<tr>
<td>SIC (MMSE/ZF)</td>
<td>No good</td>
<td>Low</td>
<td>Partial MAP/LR based algorithms (complexity depends on channel matrices)</td>
</tr>
</tbody>
</table>
ML Detection

- Received signal vector:
 \[r = Hs + n \]

- The ML detection
 \[s_{ML} = \arg \max_{s \in S^{NT}} \exp \left(-\frac{1}{N_0} \| r - Hs \|^2 \right) \]
 \[= \arg \min_{s \in S^{NT}} \| r - Hs \|^2 \]

 Due to the number of candidate vectors for searching, its complexity grows exponentially.

- Sphere decoding (SD) can reduce the complexity significantly, but the complexity depends on \(H \).
SIC Detection

\[
\begin{bmatrix}
 r_1 \\
 r_2
\end{bmatrix} = \begin{bmatrix}
 h_{11} & h_{12} \\
 h_{14} & h_{12}
\end{bmatrix} \begin{bmatrix}
 s_1 \\
 s_2
\end{bmatrix} + \begin{bmatrix}
 n_1 \\
 n_2
\end{bmatrix}
\]

\[
= QR
\]

\[
\Leftrightarrow Q^H r = \begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix} = \begin{bmatrix}
 a_1 & \phi \\
 0 & 0
\end{bmatrix} \begin{bmatrix}
 s_1 \\
 s_2
\end{bmatrix} + \begin{bmatrix}
 w_1 \\
 w_2
\end{bmatrix}
\]

QR factorization:

\[
H = QR
\]

- Low complexity, but the performance suffers from error propagation.
- However, there are several approaches to mitigate error propagation:
 - Power and rate allocations
 - Selective cancellation (Partial MAP principle)
 - List detection
Partial MAP Principle (to reduce complexity of ML detector)

• Let us consider the following received signal:

\[x_1 = a_1 s_1 + \phi s_2 + n_1 \]

Assume that the a priori probability of \(s_2 \) is known, but not \(s_1 \). Then, the partial MAP detection is now given by

\[
\begin{align*}
(\hat{s}_1, \hat{s}_2) &= \arg \max_{s_1, s_2} P(s_1, s_2 | x_1) \\
&= \arg \max_{s_1, s_2} f(x_1 | s_1, s_2) P(s_1) P(s_2) \\
&= \arg \max_{s_1, s_2} f(x_1 | s_1, s_2) P(s_2)
\end{align*}
\]

Joint Detection
Optimality of SIC based on partial MAP

Theorem: Let \(\bar{s}_2 = \max_{s_2} P(s_2) \)

If \(\frac{P(\bar{s}_2)}{\max_{s_2 \neq \bar{s}_2} P(s_2)} > V \), then

\[
\hat{s}_2 = \bar{s}_2 = \arg \max_{s_2} P(s_2)
\]

\[
\hat{s}_1 = \arg \max_{s_1} f(x_1 | s_1, s_2 = \bar{s}_2)
\]

\[
= \arg \min_{s_1} \| x_1 - \phi \bar{s}_2 - a_1 s_1 \|^2
\]

This is the cancellation based detection!
SIC Detection with Partial MAP Principle

- **2 × 2 case**: After QR factorization of $H = QR$

$$\begin{bmatrix} r_1 \\ r_2 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} + \begin{bmatrix} n_1 \\ n_2 \end{bmatrix}$$

Then, perform the partial MAP detection with the a posteriori probability of s_2 as the a priori probability.

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} a_1 & \phi \\ 0 & a_2 \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} + \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

Perform the ML detection and find the metrics and then compute the a posteriori probability of s_2.
Application to MIMO detection

- According to the partial MAP detection theorem:
 - Cancellation based on hard-decision is optimal when the previous symbols are reliably determined
 - Otherwise, soft-decision based cancellation can be used.

An example:
3. Lattice Reduction based Detection

- Lattice reduction (LR) can be used to decode lattice coded signals.
- This approach has been applied to MIMO detection by Yao in 2002.
- Wubben et. al extended this LR based detection further in 2004.
- It has been reported that the LR based MIMO detection can achieve a full receive diversity.
 - It means that the BER performance will be the same as the ML performance except for an offset
Distortion due to fading channel

\[r = Hs + n \]

s: Signal vector with orthogonal basis

\(s_1, s_2 \): 4-PAM

Tilted due to channel matrix:

Basis vectors are **not** orthogonal
Lattice (Basis) Reduction

\[H = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}, s_k \in \{0,1,2,3\} \]

Find a new set of basis vectors that are (nearly) orthogonal over lattice
Linear Detection in the LR Domain

- LR over basis vectors of channel matrix

\[H = AU \]

Integer matrix

- LR based detection

\[r = AU_c s + n = Ac + n \]

Nearly orthogonal

\[\hat{c} = A^+ r = c + A^+ n \]

\[\hat{s} = U^{-1} [\hat{c}] \]

Zero-forcing or MMSE

Detecting \(c \) and transform into the original domain
SIC Detection in the LR Domain

• QR factorization with A:

$$H = AU = QRU$$

• SIC-LR based detection

$$Q^H r = Q^H (QRUs + n)$$

$$= R\left(\begin{bmatrix} Us \\ c \end{bmatrix}\right) + Q^H n$$

$$\hat{c} = \text{SIC_Detection}(Q^H r, R)$$

$$\hat{s} = U^{-1}[\hat{c}]$$
Simulation Results

BER vs. E_b/N_0 (dB) with a 1 dB gap.
Issues with LR based detection

- LR requires a polynomial time complexity
 - The complexity depends on channel matrices
 - The complexity can be prohibitively high when the size of channel matrices is large
- LR based detectors produce hard-decision

Approaches to solve the above problems:

- Complexity reduction ⇒ Reduce the size of channel matrices using the notion of SIC
- Soft-decision ⇒ use list to produce soft-decision
4. LR based List Detection

• LR algorithms require a polynomial time complexity.

• Thus, for a large number of transmit antennas, the complexity can be still high.

• In addition, there is a performance gap from the ML detector and this gap increases with the size of constellation.
Breaking a MIMO channel into pieces

- QR factorization:

\[
\begin{align*}
r & = Hs + n \\
& = QRs + n \\
Q^H r & = Rs + Q^H n
\end{align*}
\]

\[
\begin{bmatrix}
R_1 & \Phi \\
0 & R_2
\end{bmatrix}
\begin{bmatrix}
s_1 \\
s_2
\end{bmatrix}
+ \begin{bmatrix}
n_1 \\
n_2
\end{bmatrix}
\]

Two sub-detection
Problem based on
Partial-MAP principle

\[
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
= \begin{bmatrix}
R_1 s_1 + \Phi s_2 + n_1 \\
R_2 s_2 + n_2
\end{bmatrix}
\]
List Detection of s_2

- List of candidates for s_2

\[
\hat{s}_2 = \text{Detection}(x_2)
\]

\[
\{\hat{s}_2^{(1)}, \hat{s}_2^{(2)}, K, \hat{s}_2^{(Q)}\} = \text{List Detection}(x_2, Q)
\]

- The detection of s_2 cannot enjoy a full diversity due to nulling. Thus, in general, it is not reliable.

- However, by having a list, the probability of error can be effectively reduced as error propagation can be mitigated.
SIC Detection of s_1

- Detection after SIC

$$\hat{s}_1^{(q)} = \text{Detection} \left(x_1 - \Phi \hat{s}_2^{(q)} \right), \quad q = 1, 2, \ldots, Q$$

- Choose the best or keep the list

$$\min_q \left\| \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \begin{bmatrix} R_1 & \Phi \\ 0 & R_2 \end{bmatrix} \begin{bmatrix} \hat{s}_1^{(q)} \\ \hat{s}_2^{(q)} \end{bmatrix} \right\|^2$$
LR based Detection with List

- Each sub-detection can be carried out using the LR based detection.
- Since the dimension is reduced, the complexity becomes lower.
- The list construction can be done in the LR domain with low complexity.
Error Probability with List

- To build a list, two distance measures can be used:
 - Mahalanobis (optimal)
 - Euclidean distance (suboptimal)

- Euclidean distance becomes good approximation (LR domain is nearly orthogonal)
Performance and Complexity

- The longer list length, the better performance.
- However, the complexity increases.
- Therefore, the list length, Q, enjoys the trade-off between the performance and complexity.
- Complexity: less than 3 times of MMSE detector

<table>
<thead>
<tr>
<th>Decoder</th>
<th>Complex multiplications</th>
<th>4-QAM</th>
<th>16-QAM</th>
<th>64-QAM</th>
<th>$Q = 8$</th>
<th>$Q = 12$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSE</td>
<td>$2(K + 1)K^2$</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ML</td>
<td>$K^2</td>
<td>S</td>
<td>^K$</td>
<td>4096</td>
<td>1048576</td>
<td>268435456</td>
</tr>
<tr>
<td>LR+List</td>
<td>$K^2(5K + 12)/8 + QK^2 + 2C\mathcal{P}{K/2} + \sum{k=1}^{K} 2(K-k+1)^2$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>262</td>
<td>326</td>
</tr>
</tbody>
</table>

$Q=16$

390
Simulation Results (1)

- 4×4
- 4-QAM
Simulation Results (2)

- 4×4
- 16-QAM
Simulation Results (3)

- 4 × 4
- 64-QAM
5. LR based Detection for MIMO MAC

- Uplink in a cellular system: only one user can access the channel
- Suitable for MIMO-OFDM

\[r = H_k s_k + n \]

If user \(k \) is chosen
User selection – multiuser diversity (1)

- Maximum capacity based user selection

\[k^* = \arg \max_{1 \leq k \leq K} \log \det \left(\mathbf{I} + \rho_k \mathbf{H}_k \mathbf{H}_k^H \right) \]

- Scaling law

\[\log \det \left(\mathbf{I} + \rho_{k^*} \mathbf{H}_{k^*} \mathbf{H}_{k^*}^H \right) \sim Q \log \log K \]

- This capacity based user selection is ideal to maximize the throughput. But, channel adaptive and capacity achieving codes and ML decoding have to be used.
User selection – multiuser diversity (2)

- If practical and non-ideal codes are used, the user selection criterion should be changed.
- Error probability can be a good criterion

\[k^* = \arg \min_{1 \leq k \leq K} P_{err}(\rho_k, H_k) \]

- Error probability depends on detector.
 - ML detector
 - **LR based detector** (we only show the selection criterion for this detector)
 - etc
User selection: LR based detection employed

- If a low complexity detector is employed, we may need to use different user selection criterion.

- When SIC-LR based detector is employed, the performance depends on the diagonal elements of R.

$$Q^H r = Q^H (QRUs + n)$$

$$= R \left(\begin{array}{c} Us \\ \vdots \end{array} \right) + Q^H n$$

$$\hat{c} = \text{SIC_Detection}(Q^H r, R)$$

$$\hat{s} = U^{-1}[\hat{c}]$$
User selection criterion from error probability

\[
\Pr(\text{error}) \approx \sum_{q=1}^{Q} \exp \left(- \frac{\left| r_{q,q} \right|^2}{4N_0} \right)
\]

\[
\leq Q \exp \left(- \min_{q} \frac{\left| r_{q,q} \right|^2}{4N_0} \right)
\]

\[
\Rightarrow \quad k^* = \arg \max_{1 \leq k \leq K} \min_{1 \leq q \leq N_T} \frac{\left| \left[R_{(k)} \right]_{q,q} \right|^2}{4N_0}
\]

- We can derive user selection criteria for other detectors as well using error probability.
ML detector

16-QAM

\(K = 10 \)

\(N_T = N_R = 4 \)

Criterion has to be chosen to fully exploit

- multiuser diversity
- receive diversity
LR based detectors

16-QAM

$K = 10$

$N_T = N_R = 4$
6. Concluding Remarks

• MIMO detection often requires a prohibitively high complexity to achieve a good performance.
• LR based MIMO detection and SIC based detection play a key role in reducing complexity without a significant performance loss.
• A well-designed LR based MIMO detector has a good performance which is within 1 dB from ML performance with less than 3 times complexity of linear MMSE detector (for 16-QAM and 64-QAM).
• These new low complexity MIMO detection methods are also important in deriving user selection criteria for multiuser MIMO systems.